

Capital University of Economics and Business Overseas Chinese College Course Syllabus

Year and Semester	2024 Spring					
Course Name	Data Structures and Algorithms Analysis					
Course Code	MIS222					
	General Education (Required)					
Course Tem o	□ Basic Disciplinary Course □ Professional Course (Required)					
Course Type	□Professional Course (Elective) □Professional Course (Expanded)					
	ØProfessional Course (Advanced)					
Course Credits	3					
Course Hours	Total Class	40	Lecture	49	Experiment	0
	Hours	48	Hours	48	(Computer) Hours	0
Applicable object	□ Freshman ☑ Sophomore □ Junior □Senior					
	Business Administration (Accounting)					
	☑ Information Management and Information Systems (Finance)					
Prerequisites	C or Java Programming Language					
Instructor	Prof. Smith					
	Office: C217					
Contract Information	Tele: (010) 83951082					
Contact Information	Email: skippersmith66@gmail.com (all email correspondence must have					
	in the Subject field: MIS222IT ID EnglishName reason)					
Office Hour	TBD					
Learning Centre	TBD					
Grade/Section	22IT					
Course Time/Place	Th 9:55 – 12:20)				
	Data Structures and Algorithm Analysis in C, 2nd Edition,					
Textbook	Mark Allen Weiss, China Machine Press, ISBN 978-7-111-31280-2.					

Reference Book

Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, 2nd Edition [C 程序设计语言(第 2 版·新版)]. ISBN 978-7-111-12806-9

Mike Banahan, Declan Brady, Mark Doran, The C Book, 2nd Edition. Addison Wesley. Freely available at https://publications.gbdirect.co.uk/c book/

Course Description

This course aims to elucidate data structures and methods of organizing large amount of data. Even though computers become faster and faster, the need for programs that can handle large amounts of input becomes more acute. This requires more careful attention to efficiency, since inefficiencies in programs become most obvious when input sizes are large.

Student Learning Objectives

On successful completion of this exam, candidates should be able to:

• Understand the fundamental structures on which all algorithms are based.
• Understand the formal method of analyzing general algorithm performance.
• Describe multiple sort methods and why each might be used.
• Describe multiple approaches to using trees for storing and/or organizing data.
• Describe multiple data graphing techniques and why they are used.
• Be able to calculate the Big O for basic algorithms
• Identify when using a linked list.
• Identify when to use loops, nested loops, and function calls to simplify code
logic.
• Utilize arrays for both raw data storage and strings, and being able to identify
which is which.
• Be prepared to study Data Structures and Algorithm Analysis using C or a
similar language.
•Be logical, methodical, consistent and accurate
 Apply critical thinking in the process of decision making

Website Source

https://www.hackerrank.com for practicing DS&A problems.

Teaching Methods

This course contains lectures, class discussions, homework, quizzes, presentation and exams. Students must be prepared to discuss the assigned chapters during class. Then real case and practice questions will be delivered to students as a way to test their understanding of the knowledge. This will require individual or group assignment in or after class.

Grade Criterion

Component	Weight	Description
Final Exam	20%	
Mid-Term Test	20%	
Homework	10%	
Quizzes	10%	
Presentation	20%	
Participation	10%	
Attendance	10%	
Total	100%	

Detailed Grade Computation

	Before Midterm	After Midterm
Attendance	5%	5%
Participation	5%	5%

Homework	5%	5%
Quizzes	5%	5%
Presentation		20%
Mid-Term Test	20%	
Final exam		20%
Total	40%	60%

Assessment of Student Performance

☞ Self-Study and Reading ability Practice

Instructor will give out the chapters or the reference books to read and use class hours to have discussion; students should be able to show a proactive attitude and ability for self-study and reading. Knowledge and oral English will be elements of homework or presentation score.

Thomework

Students should finish their homework by themselves. Copying from others will be treated as plagiarism and the homework scores will be lowered. Students should hand in all assignments on time. Late assignments will be accepted at the discretion of the instructor (i.e., when the student was ill or had an excused absence). Late assignments without reasonable proof will be reduced in score by 50%.

Attendance

Because the course covers a great deal of material, attending every class session is very important for performing well.

- •Being late for 15 minutes or more is considered an absence.
- •Five hours or above of unexcused absences will result in the lower level of the final grade by one grade band (e.g. from C to D +). Any excused absence must be discussed directly with the teacher.
- •Absence which is more than 1/3 of the total teaching hours will cause an F (a failing grade) directly. but students are welcome to continue attending classes.
- An incomplete grade (I) will be considered in case of medical or family emergencies.

Participation

- •Students should participate in classes actively. Half of participation grade is determined by their presentation in class. They are encouraged to ask questions relevant to the subject and express their own opinions. Every student should respect the ideas, opinions, and questions of their classmates.
- Students should also use office hours to ask questions or talk with the instructor for good communication and effective learning.
- •Frequently visiting the instructor and chatting in English during office hours is highly recommended.
- •Any misbehavior and non-class related activities in class will result in the lower level of the participation grade, including ringing cell phones.
- •All above behaviors will be solely evaluated by the instructor for scoring.

Textbook

Students must bring the textbook, a computer (if possible), USB drive, pen/pencil, and paper to class.

Topical Course Outline (original)

Week	Topics	Platform	Homework
	• Syllabus	Classroom	
1	 Chapter 1 Introduction (self-study) Chapter 2 Algorithm Analysis 	Classroom	
	Big O calculationChecking analysis	Classroom	CH02 2.1, 2.2, 2.5abc, 2.13abcdef, 2.18abcd
	 Chapter 3 Lists, Stacks, & Queues Abstract data types 	Classroom	
2	Linked ListsStructure implementationBig O analysis	Classroom	
	Doubly/circularly linked lists	Classroom	CH03 3.1, 3.3ab, 3.11 (Due Week 4)
	 Chapter 3 Lists, Stacks, & Queues Stacks Big O analysis 	Classroom	
3	Stacks in arrays vs. linked listsQueuesBig O analysis	Classroom	
	 Queues in arrays vs linked lists Circular queues	Classroom	CH03 3.17a, 3.19
	• Quiz 1	Classroom	
4	 Chapter 4 Trees Definitions General Trees Binary Search tree ADT Big O analysis Binary Search tree practice 	Classroom	
	 AVL Trees Big O analysis AVL Tree practice Splay Trees (self-study) 	Classroom	CH04 4.1ab, 4.2abcde, 4.3, 4.4, 4.5, 4.8, 4.9ab (due Week 6)
	Chapter 4 TreesB-Tree explanation	Real world	
5	B-Tree insertionB-Tree insertion practice	Real world	
	B-Trees deletionB-Tree deletion practice	Real world	CH04 4.16, 4.23, 4.36ab
	Chapter 6 Priority Queues (Heaps)Applications of Priority Queues	Classroom	
6	 Priority Queues using trees Practice	Classroom	
	 Priority Queues in arrays Linear Priority Queues Practice 	Classroom	CH06 6.2ab, 6.6
7	 Chapter 7 Sorting Insertion sort Big O analysis Practice 	Classroom	

	ShellsortPractice	Classroom	
	MergesortHeapsort	Classroom	CH07 7.1, 7.2, 7.4, 7.9a, 7.11, 7.13 (due Week 9)
	 Chapter 7 Sorting Quicksort Big O analysis 	Classroom	
8	Practice	Classroom	
	Bucketsort	Classroom	CH07 7.17, 7.18ab, 7.20, 7.25
	• Review	Classroom	
9	• Mid-term test	Classroom	
-	• Mid-term test	Classroom	
10	 Chapter 5 Hashing Hashing explained Terminology Separate Chaining Big O analysis 	Classroom	
	Linear ProbingQuadratic Probing	Classroom	
	Double HashingRehashing	Classroom	CH05 5.1abcd, 5.2, 5.4, 5.6
11	Chapter 9 GraphingGraphing Explained	Classroom	
	Terminology and examplesAdjacency Lists & Arrays	Classroom	
	Topological SortShortest Path Algorithms	Classroom	CH09 9.1, 9.2, 9.5ab (due Week 14)
	• Review	Classroom	
12	• Review	Classroom	
	• Quiz 2	Classroom	
	Chapter 9 GraphingMinimum Spanning Trees	Classroom	
13	Depth First SearchStrong Components	Classroom	
	Maximum Flow	Classroom	CH09 9.11, 9.15ab, 9.26
	• Presentations	Classroom	
14	• Presentations	Classroom	
	• Presentations	Classroom	
15	• Presentations	Classroom	
	• Presentations	Classroom	
	• Presentations	Classroom	
	• Presentations or Review	Classroom	
16	• Presentations or Review	Classroom	
	• Presentations or Review	Classroom	

Teacher's Office Hour

- •The instructor's office hour is shown in the front of the office door.
- •Students are suggested to use the instructor's office hour and learning center to ask questions or talk with the instructor once at least per week for good communication and effective learning, which is recorded in the students' participation.
- •The time can be scheduled by instructors or students, or both.

Cheating and Plagiarism

Cheating is not tolerated. Any student caught cheating on a quiz; test or exam will be given a mark of zero (0) for the particular work. At the beginning of the semester the definition of plagiarism will be carefully explained, when any thoughts or writings of another person are used, they must be clearly identified (usually one uses quotation marks) and the source notes. If any student is caught cheating on any homework assignment, the highest score the student can earn in that course is a "C".

Important Dates

Midterm Test	Week 9
Final Exam	Week 17 (Refer to the notice of the Academic Affairs
	Office)

Note: This syllabus is tentative and may be changed or modified throughout the semester. All students will be notified and a new syllabus will be given.

Instructor: Prof. Smith

Department Head: Prof. Li
