

Capital University of Economics and Business Overseas Chinese College Course Syllabus

Semester and Year 2019 Fall (September 2, 2019— January 3, 2020)

<u>Course Name</u> Linear Algebra

Course Code MAT 221

Course Type ✓ General Education (Required) ☐ General Education (Elective)

□ Professional Course (Required) □ Professional Course (Elective)

☐ Basic Disciplinary Course

Course Credits 3

Course Hours 51

Prerequisites MAT111, MAT112

<u>Instructor</u> Jianming Huang(Jake Huang)

Contact Information Office: C217

Tele: (010)83951082

Email: huangjianming@cueb.edu.cn

Office Hour T&W: 15:30-17:30 TH: 10:00-12:00

Learning Center W: 18:00-20:00 TH: 15:30-17:30

Grade/Section 2018BA1/Y01 2018IT/Y05 2018CFA/Y06

Course Time/Place Y01 M: 13:30-15:20/5#206 TH: 9:00-9:50/5#206

Y05 T: 10:00-12:00/5#109 TH: 8:00-8:50/5#109

Y06 T: 13:30-15:20/B215 W: 10:10-11:00/B215

Textbook

Lee W. Johnson, R. Dean Riess, Jimmy T. Arnold. *Introduction to Linear Algebra*,5th Edition. China Machine Press, ISBN: 7-111-10628-8

Course Description

Linear algebra studies linearity, the simplest form of quantitative relationship and provides a basis for the study of many areas of pure and applied mathematics, as well as key applications in the physical, biological and social sciences. Topics include systems of linear equations, vectors, vector equations, matrices, determinants, vector spaces, bases, and linear transformations. Prerequisite: MAT 111 & MAT112 Calculus

Student Learning Objectives

- To learn important concepts of linear algebra, such as vector spaces, basis, linear transformations, projections, least squares method, eigenvalues, and eigenvectors.
- To understand the importance of linear algebra and learn its applicability to practical problems, i.e., how the linear equations and eigenvalue problems appear in some practical applications.
- To enhance your understanding of the above concepts through occasional MATLAB-based homework problems.

Library Sources

Students can find reference books in the library or related materials on the Internet.

Reference Materials

- Strang, Gilbert (July 19, 2005), *Linear Algebra and Its Applications* (4th ed.), Brooks Cole, <u>ISBN</u> 978-0030105678
- Meyer, Carl D. (February 15, 2001), *Matrix Analysis and Applied Linear Algebra*, Society for Industrial and Applied Mathematics (SIAM), <u>ISBN 978-0898714548</u>.
- Shores, Thomas S. (December 6, 2006), *Applied Linear Algebra and Matrix Analysis*, Undergraduate Texts in Mathematics, Springer, <u>ISBN 978-0387331942</u>

Some Websites

- http://planetmath.org/encyclopedia/LinearAlgebra.html
- http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/index.htm
- http://mathworld.wolfram.com/topics/LinearAlgebra.html

Teaching Methods

This course consists of lectures, discussions and individual presentations. Students will be divided into small groups with a group leader to help other students in the group with their study. Students must be prepared to finish some small questions and small quiz during the class. After each chapter there will be some mini presentations which should be held by individuals.

Grade Criterion:

Component	Weight	Description
Final Exam	20%	A cumulative final examination will be given based on all of the contents of the class. A minimum of 25% of the exam (5 of the 20%) will consist of questions utilizing the application of critical thinking.
Mid-Term Exam	20%	A cumulative midterm examination will be given based on all of the contents of the first half of the class. A minimum of 25% of the exam (5 of the 20%) will consist of questions utilizing the application of critical thinking.
Homework	15%	Homework problems will be assigned throughout the term, including but not limited to: terminologies, research project, and reading assignments.

Quiz	20%	There will be several times quizzes during the semester. The
		purpose of the quizzes is to ensure that students keep up with the readings.
Participation	10%	Individuals will be asked to participate individually in questions during the semester. Students are required to meet with their teachers every week. Their performances should be counted in their participation.
Presentation	5%	Refer to the handouts.
Attendance	10%	Refer to attendance policy listed below.
Total	100%	

Detailed Grade Calculation

In the semester, the grades of attendance, participation, homework assignments, and quizzes account for 60 percent of a student's final grade, and the midterm exam and final exam both account for 20 percent of the final grade. 40 percent of the final grade comes before midterm and 60 percent after midterm, as shown in the following table:

	Before midterm	After midterm
Attendance	5%	5%
Participation	5%	5%
Homework/assignment	5%	10%
Quiz	5%	15%
Midterm exam	20%	
Final exam		20%
Presentation		5%
Total	40%	60%

Grading Policy

A + 100 - 97A 96-93 A- 92–90 B+ 89-87 B 86-83 B- 82-80 C+ 79–75 C 74-70 C- 69-67 D+ 66-63 D 62-60 F 59 -0

Exam Schedule

Midterm: Oct. 28- Nov. 01, 2019 Final Exam: Jan. 01 – Jan. 10, 2020

Homework

Students should finish their homework (except for group projects) by themselves. Copying from others will be treated as cheating. Students' homework scored will be lowered. Students should hand in all

assignments promptly and on time. Late assignment will be accepted at the discretion of the instructor (i.e., when the student was ill or had an excused absence). Assignment turned in late without proof of illness or had an excused absence will be reduced in score by 50%.

Assignment should be printed out. Anything that cannot be read will be marked wrong. Printing requirements are as followed: single space between lines, double space between paragraphs, font size is 12 (maximum).

Attendance

Being late for 15 minutes will result in unexcused absence. Each unexcused absence will result in 10% reduction of attendance grade. Five hours of unexcused absences will result in the lowering of grade by one level, i.e. A to A-. 17 class hours of absences under any circumstances forces a withdrawal from the course and get a grade of "F". An excused absence must be discussed directly with the teacher. An incomplete grade (I) will be considered in case of medical or family emergencies. Students must bring their textbooks to class.

Participation

Students should participate in classes actively. Half of participation grade is determined by their presentation in class. They are encouraged to ask questions relevant to the subject and express their own opinions. Every student should respect the ideas, opinions, and questions of their classmates. Students should also use office hour to ask questions or talk with the instructor for good communication and effective learning. Any misbehavior and non-class related activities in class will result in the lowering of the participation grade, including ringing beepers and cell phones. Student better frequent visit their instructors and chat in English everyday. All above behaviors will be solely evaluated by the instructor for scoring.

Topical Course Outline

Week	Date	Topics
1	0902-0906	Syllabus & Orientation
		Chapter 1 Matrices and Systems of Linear Equations
		 Section 1.1: Introduction to matrices and systems of linear equations
		 Section 1.2: Echelon form and Gauss-Jordan elimination
2	0909-0913	Chapter 1 Matrices and Systems of Linear Equations
		 Section 1.3: Consistent systems of linear equation
		Section 1.5: Matrix operations
		 Section 1.6: Algebraic properties of Matrix operations

	T	
3	0916-0920	Chapter 1 Matrices and Systems of Equations
		o Section 1.7: Linear independence and nonsingular matrices
		O Section 1.9: Matrix inverses and their properties
	0000	Review & Exercise
4	0923-0927	Chapter 3 The Vector Space \mathbb{R}^n
		Review for chapter 2
		NT 4° 1 TT 1° 1
5	0930-1004	National Holiday
6	1007-1011	Chapter 3 The Vector Space
0	1007-1011	o 3.1 Introduction
		\circ 3.2 Vector Space Properties of \mathbb{R}^n
7	1014-1018	Chapter 3 The Vector Space \mathbb{R}^n
		o 3.3 Examples of Subspaces
8	1021-1025	Chapter 3 The Vector Space R ⁿ
		 Section 3.4: Bases for Subspaces
		o Section 3.5: Dimension
9	1028-1101	Quiz and Midterm Exam
10	1104-1108	Chapter 3 The Vector Space R ⁿ
		 Section 3.6: Orthogonal Bases for Subspaces
		\circ Section 3.7: Linear transformations from \mathbb{R}^n to \mathbb{R}^m
11	1111-1115	Chapter 5 Vector Space and Linear Transformations
		o Section 5.2: Vector spaces
		 Section 5.3: Subspaces Section 5.4: Linear independence, bases and coordinates
		 Section 5.4: Linear independence, bases and coordinates Section 5.5: Dimension
		 Section 5.7: Linear transformation
12	1118-1122	Chapter 6 Determinants
		 Section 6.2: Cofactor Expansions of Determinants
		 Section 6.3: Elementary Operations and Determinants
		o Section 6.4: Cramer's Rule
13	1125-1129	O Section 6.5: Inverses Chapter 4 The Figure Problem
13	1123-1129	Chapter 4 The Eigenvalue Problem o Section 4.4: Eigenvalues and the Characteristic Polynomial
		 Section 4.4: Eigenvalues and the Characteristic Polynomial Section 4.5: Eigenvectors and Eigenspaces
14	1203-1207	 Section 4.7: Similarity Transformations and Diagonalization
15	1209-1213	Chapter 5 Vector Space and Linear Transformations
13	1207-1213	 Section 5.8: Operations with linear transformations
		 Section 5.9: Matrix representations for linear transformations
		 Section 5.10: Change of basis and diagonalization
16	1216-1220	PRESENTATION
17	1223-1227	PRESENTATION
18	1230-0103	Quiz and Final Exam Review
19	0106-0110	Final Exam

Note: Self-Study contents will be also included in your quiz and examinations.

Teacher's Office Hours

The instructor's office hour is shown in the front of the office door. Students are required to use the instructor's office hour to ask questions or talk with the instructor once at least per week for good communication and effective learning, which is recorded in the students' participation. The time can be scheduled by instructors or students, or both.

Withdrawal Policy

Students can drop the class in the first week of the semester without leaving any marks to the final grade. However anyone with 24 hours absences automatically receives an F.

Cheating and Plagiarism

Cheating is not tolerated. Any student caught cheating on a quiz; test or exam will be given a mark of zero (0) for the particular work. At the beginning of the semester the definition of plagiarism will be carefully explained. When any thoughts or writings of another person are used, they must be clearly identified (usually one uses quotation marks) and the source notes.

Important Dates

Fall Semester, 2019	August 30, 2019— January 10, 2020
---------------------	-----------------------------------

Aug.30 Registration Sep.2 Classes Begin

Sep.7-20 Freshmen's Military Training
Sep.13 Mid-Autumn Festival (tentative)
Sep.23 Classes Begin (Freshmen)

Oct.1 National Day Holiday (tentative)

Oct.28- Nov.1 Midterm Test

Jan.1, 2020 New Year's Day Holiday (tentative)

Jan.1-10 Final Exam Period

Jan.13 Winter Vacation Begins

Note: This syllabus is tentative and may be changed or modified throughout the semester. All students will be notified and a new syllabus will be given.

Instructor: Prof. Jake Huang Department Head: Prof. Jingning Li